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ABSTRACT. HOT Protocol provides the infrastructure that allows smart con-
tracts on EVM-compatible networks and Stellar Blockchain to securely own and
manage private keys. The Multi-Party Computation (MPC) Network manages
signing keys. By running an MPC node inside the Trusted Execution Environ-
ment (TEE), the protocol achieves stronger security guarantees while lowering
economic requirements for participants. The NEAR Protocol provides a de-
centralized and efficient state layer. Any smart contract can start managing
a dedicated private key by implementing a read-only method for signature
authorization.
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1. Introduction

Smart contracts are restricted to modifying and verifying state within their na-
tive blockchain, resulting in a fragmented Web3 ecosystem. Enabling smart con-
tracts to cryptographically sign messages under their own identity would allow
autonomous control over actions extending beyond the boundaries of a single
blockchain domain.

This design introduces two challenges:

(1) Message signing must be externally triggered, since smart contracts act

only upon incoming transactions
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(2) A smart contract cannot securely store private keys, as its state is publicly
accessible

To solve the first issue, a pull-based approach is used: any participant may
request a signature from the key linked to a contract, but only when the contract
explicitly authorizes signing a given message.

The second challenge can be solved with a Multi-Party Computation (MPC)
network. It securely creates and uses a secret key for signing messages, and any
operation with that key requires approval from a threshold number of partici-
pants.

Further reading describes implementation of the approaches and their inter-
connection

2. System Design
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F1GURE 1. High-level flow for obtaining a signature from a smart contract.

(1) A third party triggers the pull mechanism, attempting to obtain a signa-
ture for a message from a private key linked to a specific smart contract.
A smart contract may be linked to the multiple private keys.

(2) The MPC network performs a read-only verification to ensure that the
smart contract authorizes the signing of a particular message.

(3) The MPC network securely signs the message and sends the result back
to the third party.

2.1. Key-Owner Contract

Key-Owner 1 chain_id,
Contract contract_address
Key
Registry
MPC 2 key_id
Network

F1GURE 2. Key-Management Setup
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(1) Key management requires the contract to define the following read-only
method:

LisTING 1. Authorization function signature

fn hot_verify(
message: String,
key_id: bytes32,
metadata: bytes,
) -> bool;

Input arguments:
e message — the message being signed
e key_id — an identifier used to distinguish between multiple keys
owned by the contract. One contract can hold multiple keys, remov-
ing the need to redeploy logic per user.
e metadata — auxiliary data used in the authorization process.
For example, if message is a transaction hash, the transaction pre-
image is passed as metadata for invariant verification.
Return value: A boolean, indicating whether the message is authorized
for signing.
Each contract is wuniquely defined by the pair (chain_ id,
contract_address).
(2) A key is reserved via the MPC Network (2.2.5), returning a key_id.
(3) The Key Registry contract stores the mapping between key_id and its
authorization contract.
After setup, the MPC Network verifies a key_id by:

(1) fetching its authorization contract from the registry;
(2) calling hot_verify with the target message.
The Key-Owner contract should expose key_id to prove exclusive MPC control.

Practical example can be found in Appendix A.

2.2. MPC Network

The function of the MPC network is to manage a private key used for message
signing.

2.2.1. Design Principles

The MPC network is designed around three main principles:

e Decentralization — no single entity controls the private key or computation;
all nodes collaborate in a trust-minimized manner.
e Security — resistant to adversarial behavior, preserving computational cor-
rectness and data confidentiality.
e Scalability — designed to operate efficiently as the number of participating
nodes or supported chains increases.
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This leads to the idea that the private key used for message signing is divided
into cryptographic shares and distributed among the participants of the MPC
network.

2.2.2. Security Guarantees

The properties of this design are as follows:

e Threshold cooperation: a minimum number of nodes must collaborate to
successfully generate a valid signature.

e Key secrecy: no single node ever possesses the complete private key; each
holds only a share. An adversary would need to compromise at least the
threshold number of nodes to reconstruct or misuse the key.

e Signature indistinguishability: MPC-generated signatures are identical to
those from the master private key, unlike traditional multisignature out-
puts.

2.2.3. Interface

The MPC network exposes the following API:

e Distributed Key Generation (DKG): securely generates a private key and
distributes its shares across participating nodes. Implementation follows
the protocol by Gennaro et al. “Secure Distributed Key Generation for
Discrete-Log Based Cryptosystems” (2007)[!]

e Key Resharing — enables the addition or removal of participants, or mod-
ification of the threshold value. The key remains the same, but all shares
are refreshed to reflect the new configuration. The implemented protocol
is a specific instance of the general Distributed Key Generation (DKG)
scheme.

e Message Signing — cooperatively generates a valid signature when a
threshold of nodes participates, without ever reconstructing the private
key. The implementation depends on the chosen signature scheme. In
this work, we focus on the two most widely adopted ones:

— ECDSA, used in Bitcoin, EVM-compatible chains, and Tron. The im-
plementation the protocol by Damgard et al. Fast Threshold ECDSA
with Honest Majority(2020)[2]

— EdDSA, used in Solana, NEAR, Stellar, and TON. The implementa-
tion follows the protocol by Komlo and Goldberg “FROST: Flexible

Round-Optimized Schnorr Threshold Signatures” (2021)[3]
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2.2.4. Diagram: Initialization flow
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F1GURE 3. MPC Initialization flow

(1) The MPC Controller Contract is deployed in the genesis block to serve
two main purposes:

e State management: stores operational data of the MPC network,
including participant details like IP addresses, encryption public keys,
and identifiers

e Network coordination: handles configuration changes through on-
chain voting and triggers key resharing when thresholds or participant
sets are updated.

The contract only needs to be cost-efficient for state storage, making
NEAR Protocol an appropriate choice. The same applies to the Key
Registry contract (3).

(2) Nodes get their data from the Controller Contract. To keep the diagram
simple, only one arrow is shown — but in practice, every node fetches the
data

(3) Nodes run the DKG process to generate and receive their private key
shares. For brevity reasons a single arrow is shown. In practice there is
an arrow for each pair of participants.

2.2.5. Key Derwation Function

To ensure scalability, the network avoids repeating DKG and Key Resharing for
every new configuration. Instead, a single root key is established through DKG,
and all subsequent operational keys are obtained through deterministic derivation.

This derivation model follows a mechanism similar to idea by Wuille BIP32: Hier-
archical Deterministic Wallets(2012)[1], where a child public key can be derived
from a parent public key using a known tweak, without access to the private

shares.
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2.2.6. Message Signing Authorization

The MPC Network works with key-owner contracts, which decide whether a par-
ticular key is allowed to be used for signing.
Before running the signing protocol, each node:

a) Retrieves the contract address associated with the specified key ID from
the Key Registry.
b) Executes the authorization methods of the key-owner contract.
The process for (a) is described in 2.1.
For (b), each MPC node must operate a light node for every supported network,
or a full node where a light node implementation is not available.

2.2.7. Trusted Execution Environment

A Trusted Execution Environment (TEE) is a hardware-enforced isolated execu-
tion context that offers the following guarantees:

e Confidentiality: The TEE guarantees that both code and data executed
within an enclave remain isolated and unreadable to any external software
layer, preserving the secrecy of sensitive computations

o Integrity: The TEE ensures that enclave code executes as deployed and
that neither its logic nor runtime state can be altered by external software.

e Attestation: The TEE can produce cryptographic proof of its software
identity and state, allowing remote parties to verify that it runs trusted
code.

The MPC node is executed within a trusted environment, providing isolation for
high-risk operations:

e Computations with private key shares

e Verifying contract authorization method

Utilizing the integrity property, node logs can be treated as a source of truth,
providing a reliable basis for the governance and economic model, as will be
described in section 3.

To maintain correctness guarantees, each MPC node periodically provides an
attestation to the Controller Contract, which performs verification of the reported
state.

In practical terms, following technologies is being used to provide hardware-
assisted isolation at the VM layer:

e TDX on Intel platforms (Cheng et al. Intel TDX Demystified: A Top-
Down Approach(2023)[5])

e SEV on AMD platforms (Advanced Micro Devices inc. AMD SEV-SNP:
Strengthening VM Isolation with Integrity Protection and More(2020)[6])

2.2.8. Access Control Layer: Gatekeeper Network

To target threat of overload and malicious use of the network, access to the MPC

Network is restricted to the Gatekeeper Network.
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Gatekeepers serve two primary functions:

e Perform load balancing and filtering of incoming requests to guarantee
correctness and validity

e Ensures clear separation between the economic domains of MPC nodes
and end users. Gatekeepers never handle or store private key material.
Developers may customize and self-host Gatekeepers for their specific
workflows, even without TEE support. This separation, along with the
incentive model for this role, is described in section 3.2.2.

Offloading these two tasks to the Gatekeeper reduces the attack surface of the
MPC nodes.

2.3. Full Signature generation flow

The following diagram illustrates the end-to-end signature generation flow for a
key-owner contract.
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FIGURE 4. Signature generation flow

(1) A third party triggers the pull-based signing flow via the Gatekeeper Net-
work, requesting a signature for a message tied to the public key of a given
smart contract and submitting the necessary inputs to its authorization
method(s).

(2) The Gatekeeper manages interactions with the third party and chooses
which threshold nodes will take part in the signing.

(3) MPC nodes retrieve protocol-specific details from one another, such as IP
addresses. In reality, this happens only once during initialization, with
updates performed on each MPC configuration change. For simplicity,
the diagram here and in the following steps shows a single arrow.

(4) MPC nodes obtain the authorization methods corresponding to the public
key involved in the request.

(5) MPC nodes call the read-only authorization method to check whether the
message is allowed to be signed.

(6) After successful authorization, the MPC nodes collaboratively generate

the cryptographic signature.
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3. Governance Model

The protocol combines cryptographic and hardware security with economic and
governance mechanisms to guarantee accountability, liveness, and deterministic
network costs. At the core of the architecture is the gTOKEN, a native asset
that underpins staking, incentive alignment, and governance execution across all
protocol layers.

3.1. Governance token

gTOKEN is a fungible token on NEAR Protocol (Kuzyakov and Zaremba Fungible
Token Standard(2022)[7]).
Used to:

e rent MPC capacity via Gatekeepers

e lock collateral for nodes and Gatekeepers

e distribute rewards for honest behavior. Each NEAR Protocol epoch mints
new gTOKENSs, distributed according to participants’ contributions.

3.2. Roles

The system architecture defines five principal actor classes:

(1) MPC Nodes

(2) Decentralized Autonomous Organization (DAO)
(3) Gatekeepers

(4) Fishermen

(5) Smart Contract Users

Each component interacts through verifiable and economically secured interfaces,
forming a cohesive framework for distributed key management, transaction vali-
dation, and protocol governance

3.2.1. DAO
The DAO safeguards protocol correctness by:

e manage core protocol parameters;
e vetoing destructive or risky proposals.

DAO members are independent organizations with a material gTOKEN stake. Join-
ing requires member approval and a signed pledge to the DAO manifesto. Mem-
bers of DAO must:

e Veto any decision that endangers security or stability of the MPC network

e Approve new DAO members that meet the requirements

e Approve new MPC network parameters change

e Approve new Gatekeepers

e Process reports against Gatekeepers and MPC nodes; verify TEE-signed
logs; execute slashing when violations are proven

DAO Also controls:
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e Inflation rate

e Rewards for MPC Nodes

e Minimal stake for Gatekeeper and MPC Nodes

e Stake size per compute unit to access the network

Members of DAO must:

e Veto any decision that endangers security or stability of the MPC network

e Approve new DAO members that meet the requirements

e Approve new MPC network parameters change

e Approve new Gatekeepers

e Process reports against Gatekeepers and MPC nodes; verify TEE-signed
logs; execute slashing when violations are proven

3.2.2. Gatekeeper

Gatekeepers lease a portion of the protocol’s capacity, defined by rate limits, and
then allocate or resell that capacity to their users. They are free to determine
their own business model: charging usage fees, accepting stablecoins, or provide
it for free for some users depending on the other factors.

Each Gatekeeper co-signs a wuser’s request (gatekeeper_id, request,
deadline) and relays it to the MPC Network. These signed receipts are publicly
available in MPC logs and can serve as evidence for slashing a Gatekeeper’s stake
in cases of malicious behavior or rate-limit violations.

3.2.3. Fishermen

Any third party may monitor public TEE-signed logs and open disputes in the
controller contract.
Dispute resolution relies on TEE-signed MPC node logs, which include:

timestamps;

signing requests submitted by Gatekeepers;
validation outcomes;

protocol round statuses;

node unavailability reports;

protocol-level errors.

Submitting a dispute incurs a gTOKEN fee to prevent spam. Upon successful
slashing, the Fisherman is rewarded with a share of the penalized stake.

3.2.4. MPC Node provider
Core hardware provider. Supports the continuous and stable operation of its
MPC Node and gets rewarded for this from inflation.

e Stake gTOKEN to join the network
e carn gTOKEN after each epoch
e gTOKEN can be slashed for unstable operation
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Role Stake gTOKEN Earn gTOKEN Contribution

DAO Member YES YES Governance
MPC Node YES YES Hardware
Gatekeeper YES NO Distribution
User NO NO Smart contract user
Fishermen NO YES Monitoring

TABLE 1

4. Security Model

This section outlines the scope of attacks. The analysis is limited to adversaries
targeting:

(1) Availability of the system, and

(2) Confidentiality of private keys.

4.1. Denial of Service
4.1.1. Uncooperative node

Threat: a node stalls or refuses rounds to cause signing delays or failures.
Mitigations:
e governance: vote to exclude the node and run key resharing; slashing on
proven misbehavior
e operational: Gatekeeper selects any threshold of responsive nodes; can
blacklist slow nodes; group-testing (GBS-style) selection
e liveness: health checks maintain an active set; rolling updates avoid syn-
chronized downtime

4.1.2. Number of active nodes < threshold — 1

Mitigation: Increase n and diversify operators and hosting across independent
clusters.

4.1.3. Gatekeeper quota abuse

Threat: Gatekeeper quota abuse against the MPC network — a malicious or
compromised Gatekeeper floods nodes at maximum RPS, reducing throughput
and availability Enforce per-node request rate limits and auto-eject policies; allow
MPC nodes to collectively vote to remove the offending Gatekeeper, applying
slashing penalties verified via TEE-signed logs.

4.1.4. Gatekeeper downtime

If a Gatekeeper fails, users switch to another Gatekeeper; no unique access is held

by any single Gatekeeper.
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4.2. Confidentiality
4.2.1. Mimicry of TEE

Threat: a node pretends to run attested code. Mitigation: time-bound remote
attestation, periodic re-attestation, code-identity checks pinned in Coordinator;
nodes failing re-attestation are disabled before protocol rounds.

4.2.2. Key leakage via RAM/Persistence

Threat: a coalition reconstructs user keys by reading shares from memory or disk.
Preconditions:

e coalition size > threshold
e bypass TEE memory and persistence protections

Mitigation: TEE enclaves (memory isolation), periodic re-attestation

4.2.3. Controller Contract hijacking

Threat: Attacker gains control over the Controller Contract, disables TEE at-
testation verification, triggers key resharing to an attacker-controlled participant
set, and reconstructs the MPC key. Mitigations: The contract operates without
access keys.

4.2.4. Key Registry hijacking

Threat: Attacker modifies authorization method mappings to redirect signing
authority to malicious contracts. Mitigations: The contract operates without
access keys. Any attempt to add or remove an authorization method must be
accompanied by authorization proofs from the existing methods.

5. Conclusion

HOT Protocol enables smart contracts to securely control their own cryptographic
keys using threshold Multi-Party Computation (MPC) within Trusted Execution
Environments (TEE) and coordinated on-chain governance. It allows contracts
to authorize and produce signatures for external actions, forming the basis for
Chain-Abstracted Applications operating assets across multiple networks.
Possible use-cases include:

e Bitcoin-style multi-signature wallets without new on-chain deployments
for each policy

e Two-factor (2FA) authorization

e Seed phrase rotation (if we use seed phrase to authorize for specific MPC
key and this authorization seed phrase can be rotated)

o Wallet recovery flows

e Passkey-based wallets
11



e Other high-assurance authorization policies that are costly to implement
with traditional smart wallets
e Chain Abstracted dApps, managing assets across multiple chains
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Appendix A. Passkey Bitcoin Wallet

A passkey is a passwordless authentication method based on public-key cryp-
tography, where a private key stays securely on your device and a public key
is registered with the service. It lets you sign in by verifying a cryptographic
signature instead of entering a password, making logins both simpler and more
secure.

To demonstrate the use of HOT Protocol, we present an implemented application
that enables passkey-based Bitcoin wallets — that is, wallets where transaction
signing is controlled solely by the user’s device passkey, itself secured by finger-
print or facial recognition.

Deployed on NEAR Protocol, passkey.auth.hot.tg maps each key_id (Bitcoin
wallet) to its passkey public key. It serves as the key-owner contract with the

following hot_verify method:
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LISTING 2. Authorization function signature

fn hot_verify(

message: String,

key_id: bytes32,

_metadata: bytes,
) => bool {

ecdsa_secp256rl.verify(message, passkeyl[key_id])
}

The initialization flow for a user is as follows:

(1) Obtain the passkey public key from their device;
(2) Reserve a key_id via the MPC Network;
(3) Bind the key_id to the public key in the registry contract.
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